13 research outputs found

    Trustworthy Biometric Verification under Spoofing Attacks:Application to the Face Mode

    Get PDF
    The need for automation of the identity recognition process for a vast number of applications resulted in great advancement of biometric systems in the recent years. Yet, many studies indicate that these systems suffer from vulnerabilities to spoofing (presentation) attacks: a weakness that may compromise their usage in many cases. Face verification systems account for one of the most attractive spoofing targets, due to the easy access to face images of users, as well as the simplicity of the spoofing attack manufacturing process. Many counter-measures to spoofing have been proposed in the literature. They are based on different cues that are used to distinguish between real accesses and spoofing attacks. The task of detecting spoofing attacks is most often considered as a binary classification problem, with real accesses being the positive class and spoofing attacks being the negative class. The main objective of this thesis is to put the problem of anti-spoofing in a wider context, with an accent on its cooperation with a biometric verification system. In such a context, it is important to adopt an integrated perspective on biometric verification and anti-spoofing. In this thesis we identify and address three points where integration of the two systems is of interest. The first integration point is situated at input-level. At this point, we are concerned with providing a unified information that both verification and anti-spoofing systems use. The unified information includes the samples used to enroll clients in the system, as well as the identity claims of the client at query time. We design two anti-spoofing schemes, one with a generative and one with a discriminative approach, which we refer to as client-specific, as opposed to the traditional client-independent ones. The proposed methods are applied on several case studies for the face mode. Overall, the experimental results prove the integration to be beneficial for creating trustworthy face verification systems. At input-level, the results show the advantage of the client-specific approaches over the client-independent ones. At output-level, they present a comparison of the fusion methods. The case studies are furthermore used to demonstrate the EPS framework and its potential in evaluation of biometric verification systems under spoofing attacks. The source code for the full set of methods is available as free software, as a satellite package to the free signal processing and machine learning toolbox Bob. It can be used to reproduce the results of the face mode case studies presented in this thesis, as well as to perform additional analysis and improve the proposed methods. Furthermore, it can be used to design case studies applying the proposed methods to other biometric modes. At the second integration point, situated at output-level, we address the issue of combining the output of biometric verification and anti-spoofing systems in order to achieve an optimal combined decision about an input sample. We adopt a multiple expert fusion approach and we investigate several fusion methods, comparing the verification performance and robustness to spoofing of the fused systems. The third integration point is associated with the evaluation process. The integrated perspective implies three types of inputs for the biometric system: real accesses, zero-effort impostors and spoofing attacks. We propose an evaluation methodology for biometric verification systems under spoofing attacks, called Expected Performance and Spoofability (EPS) framework, which accounts for all the three types of input and the error rates associated with them. Within this framework, we propose the EPS Curve (EPSC), which enables unbiased comparison of systems

    On the use of client identity information for face anti-spoofing

    Get PDF
    With biometrics playing the role of a password which can not be replaced if stolen, the necessity of establishing counter- measures to biometric spoofing attacks has been recognized. Regardless of the biometric mode, the typical approach of anti-spoofing systems is to classify biometric evidence based on features discriminating between real accesses and spoofing attacks. For the first time, to the best of our knowledge, this paper studies the amount of client-specific information within these features and how it affects the performance of anti-spoofing systems. We make use of this information to build two client-specific anti-spoofing solutions, one relying on a generative and another one on a discriminative paradigm. The proposed methods, tested on a set of state-of-the-art anti- spoofing features for the face mode, outperform the client- independent approaches with up to 50% relative improvement and exhibit better generalization capabilities on unseen types of spoofing attacks

    Biometrics Evaluation under Spoofing Attacks

    Get PDF
    While more accurate and reliable than ever, the trustworthiness of biometric verification systems is compromised by the emergence of spoofing attacks. Responding to this threat, numerous research publications address isolated spoofing detection, resulting in efficient counter-measures for many biometric modes. However, an important, but often overlooked issue regards their engagement into a verification task and how to measure their impact on the verification systems themselves. A novel evaluation framework for verification systems under spoofing attacks, called Expected Performance and Spoofability (EPS) framework, is the major contribution of this paper. Its purpose is to serve for an objective comparison of different verification systems with regards to their verification performance and vulnerability to spoofing, taking into account the system’s application-dependent susceptibility to spoofing attacks and cost of the errors. The convenience of the proposed open-source framework is demonstrated for the face mode, by comparing the security guarantee of four baseline face verification systems before and after they are secured with anti-spoofing algorithms

    Anti-spoofing in action: joint operation with a verification system

    Get PDF
    Besides the recognition task, today's biometric systems need to cope with additional problem: spoofing attacks. Up to date, academic research considers spoofing as a binary classification problem: systems are trained to discriminate between real accesses and attacks. However, spoofing counter-measures are not designated to operate stand-alone, but as a part of a recognition system they will protect. In this paper, we study techniques for decision-level and score-level fusion to integrate a recognition and anti-spoofing systems, using an open-source framework that handles the ternary classification problem (clients, impostors and attacks) transparently. By doing so, we are able to report the impact of different spoofing counter-measures, fusion techniques and thresholding on the overall performance of the final recognition system. For a specific use-case covering face verification, experiments show to what extent simple fusion improves the trustworthiness of the system when exposed to spoofing attacks

    On the Effectiveness of Local Binary Patterns in Face Anti-spoofing

    Get PDF
    Spoofing attacks are one of the security traits that biometric recognition systems are proven to be vulnerable to. When spoofed, a biometric recognition system is bypassed by presenting a copy of the biometric evidence of a valid user. Among all biometric modalities, spoofing a face recognition system is particularly easy to perform: all that is needed is a simple photograph of the user. In this paper, we address the problem of detecting face spoofing attacks. In particular, we inspect the potential of texture features based on Local Binary Patterns (LBP) and their variations on three types of attacks: printed photographs, and photos and videos displayed on electronic screens of different sizes. For this purpose, we introduce REPLAY-ATTACK, a novel publicly available face spoofing database which contains all the mentioned types of attacks. We conclude that LBP, with 15% Half Total Error Rate, show moderate discriminability when confronted with a wide set of attack types

    The 2nd competition on counter measures to 2D face spoofing attacks

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. I. Chingovska, J. Yang, Z. Lei, D. Yi, S. Z. Li, O. Kahm, C. Glaser, N. Damer, A. Kuijper, A. Nouak, J. Komulainen, T. Pereira, S. Gupta, S. Khandelwal, S. Bansal, A. Rai, T. Krishna, D. Goyal, M.-A. Waris, H. Zhang, I. Ahmad, S. Kiranyaz, M. Gabbouj, R. Tronci, M. Pili, N. Sirena, F. Roli, J. Galbally, J. Fiérrez, A. Pinto, H. Pedrini, W. S. Schwartz, A. Rocha, A. Anjos, S. Marcel, "The 2nd competition on counter measures to 2D face spoofing attacks" in International Conference on Biometrics (ICB), Madrid (Spain), 2013, 1-6As a crucial security problem, anti-spoofing in biometrics, and particularly for the face modality, has achieved great progress in the recent years. Still, new threats arrive inform of better, more realistic and more sophisticated spoofing attacks. The objective of the 2nd Competition on Counter Measures to 2D Face Spoofing Attacks is to challenge researchers to create counter measures effectively detecting a variety of attacks. The submitted propositions are evaluated on the Replay-Attack database and the achieved results are presented in this paper.The authors would like to thank the Swiss Innovation Agency (CTI Project Replay) and the FP7 European TABULA RASA Project4 (257289) for their financial support

    Anti-spoofing: Evaluation Methodologies

    Get PDF
    Following the definition of the task of the anti-spoofing systems to discriminate between real accesses and spoofing attacks, anti-spoofing can be regarded as a binary classification problem. The spoofing databases and the evaluation methodologies for anti-spoofing systems most often comply to the standards for binary classification problems. However, the anti-spoofing systems are not destined to work stand-alone, and their main purpose is to protect a verification system from spoofing attacks. In the process of combining the decision of an anti-spoofing and a recognition system, effects on the recognition performance can be expected. Therefore, it is important to analyze the problem of anti-spoofing under the umbrella of biometric recognition systems. This brings certain requirements in the database design, as well as adapted concepts for evaluation of biometric recognition systems under spoofing attacks

    On the Use of Client Identity Information for Face Antispoofing

    No full text

    Face Recognition Systems Under Spoofing Attacks

    No full text
    In this chapter we give an overview of spoofing attacks and spoofing counter-measures for face recognition systems, in particular in a verification sce- nario. We focus on 2D and 3D attacks to Visible Spectrum systems (VIS), as well as Near Infrared (NIR) and multispectral systems. We cover the existing types of spoofing attacks and report on their success to bypass several state-of-the-art face verification systems. The results on two different face spoofing databases with VIS attacks and one newly developed face spoofing database with VIS and NIR attacks, show that spoofing attacks present a significant security threat for face verification systems in any part of the spectrum. The risk is partially reduced when using mul- tispectral systems. We also give a systematic overview of the existing anti-spoofing techniques, with an analysis of their advantages and limitations and prospectives for future work

    Biometrics Evaluation Under Spoofing Attacks

    No full text
    corecore